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ABSTRACT 

Successful landing of an autonomous unmanned aerial vehicle requires a high 

degree of accuracy and efficient, real-time processing. This research applies systems 

engineering concepts to investigate the feasibility of applying computer vision techniques 

and visual feedback in the control loop for an autonomous system. This thesis examines 

the framework and performance of an algorithm designed to detect and track a runway in 

images captured from a camera onboard an aircraft during the final approach and landing 

stages of flight. Using a series of image processing techniques to localize the runway and 

the Hough transformation for line detection, the algorithm is capable of detecting the 

edges of a runway with over 96 percent accuracy through 3000 test images. The 

operating conditions for this algorithm include any scenario in which visual flight rules 

apply. Additionally, the system will perform with runways that comply with Federal 

Aviation Administration regulations. Future applications of this algorithm should include 

aircraft attitude and pose estimation as well as full integration into an autonomous aircraft 

control system. 
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EXECUTIVE SUMMARY 

Research concerning autonomous vehicles and computer vision has expanded 

rapidly, and the two fields are closely related. The use of autonomous unmanned aerial 

vehicles (UAV) by the Department of Defense (DOD) has become a vital component of 

national security with the most recent successes demonstrated by the RQ-4 Global Hawk 

and the X-47B. Both of these aircraft are capable of autonomous takeoff, mission 

execution, and landing. These systems use an intricate differential global positioning 

system (DGPS) to collect accurate position estimates that allow for successful landings. 

This research follows a systems engineering approach to evaluating the feasibility of 

using computer vision and visual feedback techniques to control the aircraft in the final 

approach and landing stages of flight. Specifically, this evaluates framework for an 

algorithm to detect and track a runway from a camera onboard an aircraft. This thesis 

offers an improvement to current vision-based runway detection frameworks such as 

those made relevant by Shang and Zhongke (2011) in their paper titled, “Vision-Based 

Runway Recognition for Autonomous Landing of a UAV.”  

The first stages of image processing and detection use common pre-processing 

techniques, the first being thresholding. While thresholding is usually applied to the 

intensity of grayscale images, this research favors thresholding in the hue, saturation, and 

value (HSV) color space. This allows the algorithm to localize the position of the runway 

using chromaticity information as well as intensity information. The additional 

information improves the performance of the algorithm and results in improved isolation 

of the runway area and elimination of noise and clutter. The algorithm uses a hue 

threshold between 0 and 0.440 and between 0.700 and 1.0 to eliminate color ranges in the 

blue spectrum that easily coincide with the color of the sky. Additionally, the saturation 

threshold is set between 0 and 0.2 and the value threshold is set between 0.637 and 1.0 to 

capture the lighter and brighter runway markings. 

Following HSV thresholding, a series of morphological operations are applied to 

the image to eliminate clutter and noise while ensuring the entirety of the runway area is 

captured. The first of the basic operations used is dilation, which increases the perimeter 
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of a binary region in order to capture lost portions of the area within the region of interest 

(MathWorks 2017). The second basic operation is dilation, which decreases the perimeter 

of a binary region in order to eliminate clutter or unwanted areas (MathWorks 2017). 

Together, these operations form the basis of all morphological tasks. The algorithm first 

applies a filling operation, which dilates then erodes the image to fill holes in a region 

and recapture lost information. The algorithm then applies an opening operation to 

eliminate the noise and clutter in the image, specifically any grouping of pixels with a 

perimeter smaller than 30 pixels. Finally, the image is dilated with a vertical, rectangular 

structuring element to increase any portions of the runway region that may have been lost 

in the previous operations. Upon completion, the algorithm applies a second filling 

operation to ensure the remaining regions contain no unwanted gaps or holes. The result 

of these morphological operations is a masked image that localizes the runway area and 

eliminates as much noise and irrelevant area as possible. 

To reduce noise in the image resulting from internal camera operations or the 

environment, the algorithm filters the masked image to reduce the effects of Gaussian, 

salt and pepper, and quantization noise. The median filter was chosen instead of the mean 

filter or other techniques due to its robustness and edge preservation characteristics. As 

Dangeti (2003, 18) describes in her research, median filtering samples a predetermined 

window of pixels from the image and replaces the center pixel of interest with the median 

intensity value. 

In an additional attempt to preserve edges within each frame, the algorithm 

sharpens the image using MATLAB’s “imsharpen” function with an edge radius of one 

pixel. The algorithm uses a particular image sharpening technique, called unsharp 

masking, which creates a Gaussian-blurred version of the original image and subtracts the 

blurred copy from the original, resulting in sharper edges in areas that meet the 

conditions of the system (Cambridge in Colour 2017). This process advantageously 

produces edges that are sharply delineated and easier to detect in later stages of the 

algorithm. 

With a sharpened image, the pre-processing steps are complete and the algorithm 

can successfully apply edge detection techniques. This research only compared 
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traditional edge detection methods because they are more computationally efficient while 

maintaining a sufficient level of accuracy. In a comparison of the Sobel method and the 

Canny method, the Sobel operator was the edge detection method of choice due to its 

lesser processing time. The Sobel method uses a 3x3 operator that sums the gradient 

values of orthogonal vectors resulting in a magnitude and direction value for a given 

neighborhood of pixels (Sobel 2014). Within the algorithm, the Sobel operator captures 

all edges within the image that meet a minimum threshold of 0.015, which was 

determined through trial and error. The result is a binary image that only displays the 

lines meeting the threshold set by the Sobel operator. 

The application of the Hough transformation is the most important component of 

the runway detection algorithm. Paul Hough first patented the Hough transform in 1962 

as a means to detect patterns created by subatomic particles in a bubble chamber. The 

Hough transform, as used today, transforms all points in the image frame in a new polar 

parameter space. Within the parameter space, all points in an image frame correspond to 

a sinusoid, points in the parameter space are straight lines in the image, and points on the 

same line in the image frame will share a common point in the parameter space (Hart and 

Duda 1972, 4). The algorithm applies the Hough transform to the edge-detected image 

and searches for lines within the range of -35 and 35 degrees to match the expected 

runway angle from the final approach perspective. The top 5–7 peaks in the Hough 

parameter space are chosen and analyzed in order to determine the best match for the 

runway edges. Typically, the top two peaks are the most likely matches; however, the 

most prominent lines in the image will not necessarily coincide with the edges of the 

runway. To avoid incorrect identification, the algorithm examines the resulting lines for a 

number of common error scenarios. The first error check is the distance between points 

on the runway edges. Any separation of less than 20 pixels indicates that the detected 

runway edges are too close and that incorrect lines have been selected. Therefore, the 

algorithm analyzes the next grouping of peaks in the Hough space. Conversely, if the 

distance between runway endpoints is greater than 150 pixels in the x direction or 40 

pixels in the y direction, the detected edges are too far apart and the algorithm signals a 

line mismatch. Together, these test scenarios ensure that the detected edges fall within the 
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expected range for the runway geometry. Additionally, in real-time application, the 

detected runway edges are averaged between image frames, achieving the effect of a low 

pass filter. This limits the effect of mechanical vibrations on the camera and it reduces the 

impact of slight errors within the algorithm. 

The algorithm was tested on 3000 approach images to Monterey Regional Airport 

taken from a TASE200 camera attached to the airframe of a Cessna 206 below the left 

wing. Overall, the system achieved an accuracy of 96.2 percent across all images, 

incorrectly identifying only 114 of the 3000 frames. The primary sources of inaccuracies 

were distance extremes and misidentified clutter within the image. The algorithm 

performs comparatively poorly at extremely long distances and extremely short distances. 

At long distance, noise and blurring in the image make accurate detection of runway 

markings difficult. At short distances, the aircraft is at very low altitudes, which distorts 

the perspective of the runway and makes accurate detection more difficult. Noise and 

clutter only become a problem in images when they align with one of the runway edges. 

If clutter is close enough to the runway edge and large enough to pass through noise and 

clutter elimination methods, it can be misidentified as a part of the runway edge. Outside 

of these specific scenarios, the algorithm performs well. An original runway approach 

image and its corresponding output from the algorithm are shown in Figure 1. 

 

 Figure 1. Original Approach Image (left) and Algorithm Output (right) 
 

Future applications of this algorithm could include attitude and pose estimation as 

well as complete integration with an aircraft control system. Based on the performance of 

the runway detection and tracking algorithm, it is evident that computer vision could play 

a significant role in the navigation and control of autonomous UAVs. However, much 
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work remains to integrate the algorithm with an aircraft’s control system. For one, 

attitude and pose estimation must be applied to accurately estimate the position of the 

aircraft. This information will play a crucial role in fulfilling the feedback control loop 

within the control system of the aircraft. Overall, it is reasonable to expect that visual 

feedback can play an important role in the future of autonomous aircraft. 
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I. INTRODUCTION 

The introduction presents the current state of unmanned aerial vehicles (UAV) 

and auto-land procedures. This chapter will describe UAVs in a Department of Defense 

(DOD) context while linking the goals of this research to DOD requirements for 

autonomous systems. Additionally, the overall concept and objectives for a vision-based 

landing system and the scope and limitations involved in the research are outlined. 

A. VISION FOR UNMANNED AERIAL VEHICLES 

Autonomous systems are fulfilling increasingly important and complex roles 

within the DOD and foreign militaries across the globe. Not only are autonomous 

systems capable of taking the warfighter out of dangerous situations, but they can operate 

in diverse environments while accomplishing a versatile collection of missions. The DOD 

Unmanned Systems Integrated Roadmap for FY2011–2036 (2011, 3) states, “DOD 

envisions unmanned systems seamlessly operating with manned systems while gradually 

reducing the degree of human control and decision making required for the unmanned 

portion of the force structure.” Thus, the ideal autonomous system is one that can 

accomplish its mission without any human intervention by making tactical or strategic 

decisions without a human in the control loop. While the capabilities of unmanned aerial 

systems (UAS) are increasing, they still require significant levels of human oversight and 

external control inputs, usually via remote piloting at ground control stations. In order to 

achieve increased autonomy in DOD systems, decision-making and control processes 

must be integrated into the system itself. The advanced autonomous vehicle should be a 

self-contained system capable of gathering information from its surroundings, processing 

the information relative to its tactical scenario and mission, determining a course of 

action, and acting on its decision without external human inputs. 

The DOD Research and Engineering Technical Assessment on Autonomy (Office 

of Technical Intelligence 2015, 4) encourages additional research into low-cost systems 

capable of achieving autonomous “perception, cognition, and action.” The statement 

implies an underlying intent to develop unmanned systems that fulfill a variety of 
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dangerous and complex roles while doing so at a lower cost than current mission 

execution levels. Achieving full autonomy in aerial vehicles is technologically 

challenging and the solutions tend to be expensive. This research offers a method to 

increase autonomy in UAVs via low-cost vision systems. While this research will focus 

on aerial systems, the basic principles of vision-based control are applicable to all 

autonomous systems in the DOD. 

B. CURRENT STATE OF MANNED AND UNMANNED AIRCRAFT 
LANDING PROCEDURES 

This section provides a brief overview of both manned and unmanned aircraft 

landing procedures. The first subsection focuses on general landing procedures while the 

second and third subsections focus on the technical aspects of assisted and autonomous 

landings. 

1. General Landing Procedures 

This research focuses on the stages of landing from final approach to touchdown 

of the aircraft. Specific landing procedures will vary based on the size and aerodynamic 

characteristics of the aircraft and environmental conditions; however, the Federal 

Aviation Administration outlines a general approach to landing in its Airplane Flying 

Handbook. The pilot reaches the final approach when the heading of the aircraft, given no 

crosswind, is aligned with the center of the runway and the aircraft is following the 

desired glide slope (Federal Aviation Administration [FAA] 2016a, 8.3). Throughout the 

final approach, the pilot should make constant adjustments to align the aircraft with the 

runway centerline, maintain the appropriate glide slope, and maintain the appropriate 

airspeed via control inputs to the rudder, ailerons, elevators, flaps, and engine power 

(FAA 2016a, 8.3-8.6). The pilot should aim for a predetermined touchdown point 

throughout the final approach, typically delineated by two specific markings on either 

side of the runway beyond the threshold (FAA 2016a, 8.10). A useful tool for the pilot in 

achieving a consistent approach angle is to ensure that runway perspective remains the 

same (FAA 2016a, 8.10). An elongated, narrow perspective indicates a steeper glide 

slope while a flatter, shorter perspective indicates a shallow glide slope (FAA 2016a, 
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8.10). This technique should be continuously applied until the pilot must flare the nose of 

the aircraft and touchdown. The common theme throughout the landing process is that 

visual cues are essential to maintaining an accurate final approach and completing a 

successful landing. By using a vision-based landing procedure for autonomous systems, 

the same general procedure applies. 

2. Assisted Landings 

A common and well-accepted landing navigation aid is the Instrument Landing 

System (ILS). The system uses components called a localizer and a glide slope to provide 

incoming aircraft with azimuth and elevation information for landing (FAA 2016b). The 

localizer generates VHF signals that the incoming aircraft can translate into relative 

positions left or right of the runway centerline (FAA 2016b). The glide slope station also 

generates VHF signals that the incoming aircraft translates into elevation positions either 

above or below a three-degree angle of descent (FAA 2016b). When carefully integrated 

with runway markings and lighting, ILS becomes an integral tool for pilots. 

Distance Measuring Equipment (DME) is another navigational aid that is often 

integrated with ILS. DME stations at airports receive and relay radio signals from 

incoming aircraft, which the aircraft’s DME equipment can then use to calculate distance 

from the runway (FAA 2014). DME differs from localizer and glide slope stations 

because it provides direct slant range between the runway and the aircraft rather than 

azimuth and elevation information (FAA 2014). 

Naval aviators use an improved version of the Fresnel Lens Optical Landing 

System (FLOLS) as a navigation aid for landing onboard aircraft carriers (Golovcsenko 

1976, 9–11). As with ILS, FLOLS provides the incoming aircraft with its position 

relative to the center of the runway through a lighted reference station located at the edge 

of the flight deck (Golovcsenko 1976, 9). The pilot sees a bar of light at the center of the 

FLOLS station, when the bar is stationed above the green reference lights on either side, 

the glide slope is too steep and when the bar is stationed below, the glideslope is too 

shallow (Golovcsenko 1976, 9). The FLOLS is depicted in Figure 1. 
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Figure 1.  FLOLS System Onboard an Aircraft Carrier. Source: NAVAIR Fleet 
Readiness Center Southwest (2003). 

3. Current Autonomous Landing Capability 

Few unmanned aerial vehicles can successfully takeoff and land autonomously. 

Most notable are the RQ-4 Global Hawk and the X-47B, both produced by Northrop 

Grumman. The RQ-4 Global Hawk is an operational unmanned aerial system designed 

for intelligence, surveillance, and reconnaissance with over 200,000 operational flight 

hours (Northrop Grumman 2017). The X-47B is an unmanned combat air system 

(UCAS) created to test the feasibility of an autonomous carrier-based air platform 

(Northrop Grumman 2015). Together, these aircraft represent the future of UAVs as used 

by the U.S. military while leading the field in auto-land technology. 

The autonomous landing process for both aircraft is similar. Both use differential 

global positioning systems (DGPS) and inertial navigation systems (INS) to make 

precision adjustments in the landing phase. DGPS uses a stationary radio transmitter in 

addition to the four satellites necessary for a GPS fix, significantly increasing the 

accuracy of the system (Defense Standardization Program 2010, 5). The Global Hawk 

specifically uses dual KN-4072 INS/GPS onboard systems for guidance in the landing 

stage (Loegering and Harris 2002, 2). Prior to takeoff and mission execution, the Global 
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Hawk is loaded with a series of GPS waypoints for the landing sequence that guide the 

aircraft to the runway and indicate when the aircraft should begin executing specific 

landing procedures (Loegering and Harris 2002, 3). For example, a waypoint positioned 

approximately 150 seconds from the point of touchdown indicates that the Global Hawk 

should change speed to meet final approach requirements (Loegering and Harris 2002, 3). 

Though not an exact replication, the X-47B utilizes a similar procedure that closely 

mirrors the Joint Precision Approach and Landing System (JPALS). JPALS sea-based 

systems, such as those used on aircraft carriers, implement a landing process similar to 

that of the Global Hawk, but they also integrate data from a shipboard INS to account for 

the continuous motion of the ship (Defense Standardization Program 2010, 6). This 

additional layer of INS data allows incoming aircraft such as the X-47B to land with the 

accuracy and precision required for carrier-based operations. DGPS-based systems, such 

as those found on the RQ-4 and the X-47B, offer superior performance for autonomous 

landings, but they add a significant level of complexity to the system.  

C. VISION-BASED LANDING SYSTEM CONCEPT 

Developing a vision-based landing system requires three central components: an 

image processing algorithm, a pose estimation algorithm, and a control system integrated 

with the unmanned aerial vehicle. 

1. Control 

The execution of the vision-based landing system will follow the framework for a 

standard control loop, as shown in Figure 2. Error signals related to heading, altitude, and 

speed will serve as inputs to the controller, which calculates corresponding outputs for 

the aircraft control surfaces to achieve the desired state. In this case, the desired state is a 

heading aligned with the center of the runway, a three-degree angle of descent, and 

consistent approach speed. The resulting state of the aircraft following these control 

actions will be measured and fed back into the controller via the vision-based system 

established in the previous steps. The camera will capture an image of the runway, which 

the pose estimation algorithm will then use to estimate the attitude and position of the 

aircraft and consequently the error signal for the controller. The unmanned system will 
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continuously execute the control loop until the aircraft safely lands. In Figure 2, ea, eh, 

and es represent the altitude, heading, and speed error, respectively. Likewise, δe,	δr,	and	

δt	represent the required changes in elevator angle, rudder angle, and thrust, respectively. 

 

Figure 2.  Vision-Based Landing Control System 

2. Image Processing 

The image processing component of the vision-based landing system involves 

detection and tracking of the runway in images taken from a camera onboard the aircraft. 

The objective of the image processing component is to accurately identify and localize 

the runway while distinguishing relevant markings and characteristics of the runway. The 

various computer vision techniques that allow for the successful completion of this 

step will be outlined in later chapters, as the image processing component is the focus 

of this research.  

3. Pose and Attitude Estimation 

Pose and attitude estimation is the process of calculating the roll, pitch, yaw, glide 

slope, and speed values for the aircraft. This is the stage in the vision-based landing 

system in which the system gains situational awareness by analyzing runway information 

provided by the previous image processing algorithm. Thus, the same visual cues used by 

human pilots can be used by unmanned autonomous systems.  
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a. Heading Error 

Heading error is crucial to maintaining alignment with the centerline of the 

runway in the final approach stage. The system can maintain proper heading by ensuring 

that the internal angles of each edge of the runway are equal, assuming that the position 

of the camera in relation to the center of the aircraft is known and that the aircraft is not 

experiencing any sideslip. Equation 1.1 describes the relationship between internal 

runway edge angles and the heading error. 

 ( )h l re f       (1.1) 

In Equation 1.1, the theta values represent the left and right internal angles, 

respectively, while the final value represents a function that adjusts for the sideslip angle 

of the aircraft depending on the aircraft dynamics and external conditions. 

b. Altitude Error 

The algorithm should calculate altitude error as a ratio of the distant runway edge 

to the leading runway edge, assuming that the length and width of the runway is known. 

If the aircraft is maintaining a consistent glideslope through descent, the ratio will remain 

the same. Larger or smaller ratios between the runway ends should trigger an error signal 

in the system, as these conditions indicate the glide slope is either too shallow 

or too steep.  

c. Speed Error 

Estimating speed from vision alone is a difficult task and it is not one that human 

pilots can accurately complete. Therefore, it is reasonable to assume that some assistance 

may be required from additional sensors, such as pitot tubes, in order to calculate 

airspeed. Visual cues that may lend to the calculation of airspeed could include the 

calculation of the rate of change of a known distance in the image frame, such as the 

width of the runway. 
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D. RESEARCH QUESTION AND OBJECTIVES 

A capability need statement for future UAVs undoubtedly evokes the need to 

create an accurate, robust, and cost efficient system that can successfully achieve a given 

mission profile without human intervention. While achieving autonomy in aerial systems 

is a multi-faceted issue, developing an improved autonomous landing capability remains 

a critical issue for the future of unmanned systems. What is required is a systems 

engineering approach to the development and assessment of autonomous landing 

processes. While the RQ-4 and X-47B have demonstrated autonomous landing 

capabilities, they are complex, expensive, and still require some degree of human 

intervention. A critical component of systems engineering is the process of analyzing the 

solution space to find the best approach to overcome a given problem. The process must 

include trade-off and feasibility analysis to determine the best solution for all 

stakeholders. This thesis uses a systems engineering approach to evaluate the feasibility 

of a real-time, vision-based runway detection and tracking algorithm that will aid in the 

landing of a fixed-wing UAV. As this is a complex problem, it requires in-depth analysis 

and a fundamental understanding of the technical issues. This research must first explain 

the framework and methodology for the vision-based landing system, then conduct 

objective analysis of its performance and feasibility in future systems. Thus, this thesis 

aims to provide a quantitative and qualitative analysis of a computer vision approach 

intended to achieve an autonomous landing capability.  

E. SCOPE, LIMITATIONS, AND ASSUMPTIONS 

A satisfactory runway detection and tracking algorithm should be extremely 

accurate so as to prevent false detection and, therefore, the passing of erroneous signals to 

the aircraft control system. The algorithm should also be robust and reliable with the 

ability to detect the location of the runway at long and short ranges, in all conditions 

meeting visual flight rule (VFR) weather minimums as defined by the Federal Aviation 

Administration (FAA), and through noisy image frames taken from live video onboard 

the aircraft. Processing time must also be a consideration for eventual application in a 

real-time environment. Fast processing times are often at odds with increased accuracy 
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and robustness. Therefore, one must evaluate every aspect of the detection and tracking 

process based on necessity and optimization. 

The fields of unmanned autonomous vehicle research and computer vision are 

vast, highlighting the importance of scope limitation for individual research projects. This 

thesis focuses on autonomous fixed-wing aircraft. Size of the aircraft is not necessarily a 

relevant factor so long as the characteristics of the aircraft do not call for special 

considerations for control during the final approach and landing stages of flight. 

Therefore, the results of the detection and tracking process for fixed-wing aircraft may 

still be relevant to all unmanned aerial vehicles including rotorcraft. 

While the computer vision algorithm should be robust for use on a wide variety of 

runways, a few general assumptions are required. First, the runway markings used as 

visual cues should abide by Federal Aviation Administration standards as outlined in AC 

150/5340-1L also titled “Standards for Airport Markings.” Secondly, all runways should 

have a centerline and side stripes for accurate detection. These are standard markings for 

precision instrument runways. Lastly, there should be no obstacles or obstructions in line 

of sight to the runway in the final approach stage of flight. A runway meeting all of these 

assumptions is depicted in Figure 3. 

 

Figure 3.  Precision Instrument Runway and Markings in Accordance with 
Federal Aviation Administration Standards. Source: FAA (2015). 
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II. DATA SAMPLES AND LITERATURE REVIEW 

This chapter describes the data used for evaluation of the vision-based runway 

detection and tracking algorithm. A complete literature review and thesis overview is also 

included to provide reference frame for the reader. 

A. DESCRIPTION OF AVAILABLE DATA 

The images used for this research feature a final approach at Monterey Regional 

Airport (MRY). The data was collected from a Cessna 206 airplane with a TASE200 

camera attached to the airframe below the left wing. The setup is shown in Figure 4. 

 

Figure 4.  Aircraft and Camera Setup for Collection of Data. 
Source: Gloria (2016). 

The camera has a frame rate of 30 frames per second (fps) and this research used 

3000 frames of the final approach video. The remaining characteristics of the TASE200 

camera are shown in Table 1. 
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Table 1.   Specifications for TASE200 Camera. Adapted from Gloria (2016). 

MECHANICAL SPECIFICATIONS 
Diameter 4.4 inches 

Height 7.5 inches 
Weight 2.34 pounds 

PERFORMANCE 
Use Daylight and infrared imaging 

Pan limits 360˚ continuous 
Tilt limits +23˚/-203˚ 
IR camera Resolution:640x480; HFOV: 10.5˚ 

Daylight camera Optical zoom: 31x; HFOV:55.7˚-1.94˚ 

 

The images cover approximately one minute and 40 seconds of flight time in the 

final approach to the runway at Monterey Regional Airport. The starting altitude is 

approximately 1461.0 feet and the final altitude matches the elevation of Monterey 

Regional Airport’s runway. The average airspeed throughout the descent was 

approximately 94.5 knots. Samples of the runway images from long, medium, and short 

range are shown in Figure 5. 

 

Figure 5.  Long (left), Medium (middle), and Short (right) Range Approach 
Images to Monterey Regional Airport 

The TASE200 system also collected INS and GPS metadata from the flight that 

corresponds to each individual image frame. The GPS data from the final approach to 

Monterey Regional suggests a relatively straight flight path, as shown in Figure 6. The 

blue line represents the path of the aircraft while the red points represent the estimated 

target area of the camera throughout the final approach. 
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Figure 6.  Flight Path Represented in Latitude and Longitude Coordinate Frame. 
Adapted from AirNav (2017). 

The system also captured altitude, speed, and attitude information from the 

aircraft for each individual image frame. The altitude and heading data is shown in Figure 

7. It is apparent that the aircraft follows a relatively stable rate of descent and maintains a 

consistent heading. In Figure 7, the blue line represents the aircraft altitude and the red 

line represents the altitude of the camera’s target. 

 

Figure 7.  Altitude and Heading Flight Data 
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For future pose estimation evaluation, it will be important to consult the true roll, 

pitch, and yaw data from the flight. This data is displayed in Figure 8, where the blue and 

red lines represent the position of the TASE200 camera gimbal and mount, respectively. 

 

Figure 8.  Roll, Pitch, and Yaw Flight Data 

Additionally, the TASE200 system collected speed data from the flight. The 

corresponding information is shown in Figure 9. The top graph displays the aircraft speed 

calculated using GPS data while the bottom graph shows speed relative to the vertical 

axis of the body of the aircraft. 

 

Figure 9.  Speed Flight Data for GPS Speed (top) and 
Vertical Axis Speed (bottom) 
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Finally, it may be necessary to calculate transformations from the camera frame 

to the aircraft body frame or the world frame. These calculations would require 

information concerning the pose of the camera in each frame. This information is 

displayed in Figure 10. 

 

Figure 10.  Roll, Tilt, and Pan (left) and Roll, Tilt, and 
Pan Rate (right) Flight Data 

B. LITERATURE REVIEW 

Research in the fields of control theory and computer vision has resulted in a 

number of methods recommended for real-time runway detection and tracking. This 

section reviews previous research that provides the foundation for this thesis. Based on 

these techniques and methodologies, this thesis seeks to improve detection and tracking 

performance and present alternatives to improve accuracy or processing time. Broadly, 

the relevant research areas include runway detection and tracking, pose and attitude 

estimation, and control theory. 

In “Vision-based Runway Recognition for UAV Autonomous Landing,” Jiajia 

Shang and Zhongke Shi (2007) describe one of the most complete methods for runway 

detection and implementation in an aircraft control system. Generally, Shang and Shi’s 

methodology includes image preprocessing, runway area location, edge detection, and 

runway edge determination. The preprocessing stage uses a 3x3 crisscrossing median 
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filter, a standard and reliable image processing technique, to eliminate noise in the image 

(Shang and Shi 2007, 112). The runway location stage uses a double grayscale threshold 

technique that eliminates pixels below a predetermined threshold from an image, leaving 

only those regions in the image that lie on the runway (Shang and Shi 2007, 113). 

Grayscale thresholding reduces processing time because it only analyzes intensity 

information. While quicker, it also eliminates hue and saturation information that might 

contribute to the accuracy of detection. Shang and Shi chose to use the Sobel operator to 

detect vertical and horizontal lines in the image for further processing (2007, 113). The 

Sobel operator uses vector summations from a 3x3 neighborhood to gather gradient 

information for each pixel (Sobel 2014). Following edge detection, Shang and Shi used 

the Hough transform to find lines in the parameter space that correspond to the runway 

edges (2007, 114). This process is well suited for accurate real-time detection of runway 

edges and this thesis uses the general framework of this algorithm. 

Other common runway detection methods involve matching real-time images to 

templates of a runway to determine distance and position. This method is typically more 

time intensive and prior images of the runway are required for successful detection and 

tracking. While this technique may be feasible for UAVs that consistently use the same 

runway for landings, it does not meet the requirement of robustness as previously 

discussed in this chapter. 

C. THESIS ORGANIZATION 

As previously stated, this thesis specifically focuses on the image processing 

component of the larger vision-based landing system, which aims to accurately detect and 

track a runway in real time. The systems engineering feasibility analysis starts with a 

complete description of the framework and methodology of the runway detection and 

tracking algorithm in Chapter III. This chapter outlines the pre-processing steps necessary 

to localize the runway and eliminate noise and clutter. Next, Chapter IV reviews the 

chosen edge detection technique, the Hough transformation to identify the runway edges 

within the image, and the error detection and correction methodology. Then, Chapter V 

outlines the result of the feasibility analysis and includes a discussion of the algorithm’s 
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performance. This thesis ends with Chapter VI presenting conclusions from this research 

and outlines future work for autonomous landing system development. 
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III. FRAMEWORK AND METHODOLOGY: 
PRE-PROCESSING 

This chapter describes the detailed pre-processing steps of the runway detection 

algorithm. These steps include image thresholding, morphological operations, image 

masking, and image sharpening. The algorithm was developed and executed in 

MATLAB. Use of any predefined functions from the MATLAB image processing 

toolbox is explicitly stated. 

A. THRESHOLDING DESCRIPTION AND PURPOSE 

Thresholding is the process of segmenting an image based on a specific 

characteristic such as color or intensity (Cheng, Sun, and Wang 2011, 28). Thresholding 

is a fundamental image processing technique because it is a simple and computationally 

efficient way to focus on relevant areas while eliminating irrelevant regions. 

Thresholding results in the isolation or elimination of a specific region within the image 

for further processing. While grayscale intensity thresholding is a common technique, all 

color spaces are can be used for thresholding but determination of the correct color space 

requires trade-off analysis for accuracy and processing time. 

The purpose of image thresholding for runway detection is twofold. First, it is the 

initial step for localizing the runway within the given frame. With properly defined 

thresholds, the algorithm should effectively highlight the area of interest, which is the 

runway. Additionally, by highlighting the relevant areas of an image, thresholding should 

save time in later stages of the algorithm by limiting the number of pixels processed 

through more complex and computationally intensive steps. Based on the results of this 

research, it is evident that thresholding often will play the greatest role in eliminating 

noise and clutter from the image. While thresholding has the potential to eliminate large 

unnecessary areas, it is still important to avoid elimination of important data within the 

image when constructing the thresholding limits. 
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1. Description of Color Spaces 

Alvy Ray Smith introduced the HSV (hue, saturation, and value) color space in 

1978. Smith (1978, 3) described hue as “the dimension with points on it normally called 

red, yellow, blue-green, etc.,” saturation as “the departure of a hue from achromatic, i.e., 

from white or gray,” and value as “the departure of a hue from black.” Hue, saturation, 

and value can describe colors in a more intuitive fashion. Smith (1978, 4) likened the 

HSV color model to the process used by an artist to create his or her paint, where he or 

she would choose a base color and add white or black paint in order to achieve the 

desired saturation and value. Smith’s primary objective in creating the HSV color space 

was to provide an alternative to the RGB (red, green, blue) color space, which was widely 

used but difficult to conceptualize. A visual representation of the conical HSV space is 

shown in Figure 11. 

 

Figure 11.  Conical Representation of the HSV Color Space 

Electronic devices and monitors typically use the RGB color space to produce and 

display images. While there are variations of the RGB model, they all use some 

combination of red, green, and blue channels to create the full spectrum of colors. The 

chromaticity of a color defines this red, green, and blue combination and the mixing 

process is a close reproduction of how the receptors in the human eye process colors via 

wavelength combinations (Joblove and Greenberg 1978, 20–21).  
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Grayscale images eliminate all hue and saturation information, leaving intensity, 

or value, as the only remaining characteristic. All pixels within a grayscale image 

will therefore carry some value at or between the extremes of black and white. The 

simplicity and intuitive nature of grayscale images make them popular for image 

processing. Grayscale images also provide an advantage in processing speeds, as the 

images will only contain one channel for intensity compared to three channels in the HSV 

and RGB color space. 

2. Comparison of Color Spaces 

Determining the best color space for the thresholding process required a thorough 

comparison based on accuracy and computation time metrics. The three options were the 

RGB color space, the HSV color space, and intensity for grayscale images. 

The RGB color space was eliminated early in the comparison process because 

runway surfaces tend to include little variation in chromaticity, making it difficult to 

achieve any degree of accurate thresholding using red, green, and blue channels. Red, 

green, and blue channel thresholding is most effective when the target or area of interest 

is a unique color and its particular combination of red, green, and blue allows for distinct 

separation from the surrounding environment. Unfortunately, this is not the case for the 

dark runway surfaces and white runway markings, which only fall at the extreme values 

of the red, green, and blue channels. If anything, RGB analysis demonstrated the 

importance of using multiple image characteristics for analysis rather than simply 

chromaticity or intensity. 

After comprehensive comparison, research and experimentation favored the HSV 

color space over the grayscale color space. Implementation in the MATLAB environment 

proved that the grayscale thresholding process is actually quite involved. The RGB color 

space is the most common choice for image storage on electronic devices, so the 

algorithm must first convert the image into the grayscale color space from the RGB 

space. Following this conversion, each pixel in the image must undergo a gradient 

calculation in order to determine the maximum and minimum intensity values for the 

thresholding limits. It is possible to choose predefined threshold limits that do not use a 
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relative gradient relationship, thus eliminating the need for the gradient operation. 

However, this has a decidedly unacceptable effect on accuracy, as intensity changes 

considerably with distance from the runway, environmental conditions, and noise. 

Experimental results comparing HSV and grayscale thresholding times support the 

conclusion that HSV thresholding is actually the superior method. A test of 30 trials 

for each method determined that the difference between HSV and grayscale mean 

processing times was 0.147 seconds ± 0.010 seconds in favor of the HSV color space (see 

the Appendix for full results). Considering real-time requirements for the algorithm, 

0.147 seconds is a significant difference.  

The HSV color model was also the preferred choice in accuracy comparisons. The 

inclusion of hue and saturation data in the thresholding process resulted in a more robust 

controller that could accurately localize the runway region through a wider range of 

distances, varying environmental conditions, and image noise levels. When only working 

with intensity values, the user is limited to the manipulation of one channel for 

thresholding. Wide ranges will eliminate noise and clutter but may result in the 

elimination of relevant areas in the runway region. Narrow threshold ranges will include 

all the relevant areas of the runway but increase noise and clutter in the output image. 

The difference between these extremes is small but the results are drastically different, as 

shown in Figure 12. 

 
Narrow intensity threshold from 0.65 to 0.85 (left) compared to a wider intensity 
threshold from 0.60 to 0.90 (right). 

Figure 12.  Comparison of Narrow and Wide Intensity Threshold Margins 
for a Grayscale Image 
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It is evident in Figure 12 that choosing threshold limits is a sensitive process. The 

intensity ranges only varied by a value of 0.05 for the upper and lower limits, but the 

results are dramatically different. Considering the uncontrollable factors that can affect 

image intensity, relying on a single image characteristic to achieve robustness in the 

thresholding process is challenging at best. In the HSV color space, the combination of 

hue, saturation, and value channels adds redundancy in the thresholding process, 

improving its resilience to variation due to uncontrollable factors. Therefore, HSV 

thresholding was the more accurate method in almost all trials. 

3. Applied HSV Threshold Limits 

The most appropriate approach to determining the upper and lower HSV 

threshold limits was through trial and error. The greatest challenge was finding limits that 

worked at both long and short distances from the runway. Extensive analysis of 3000 

frames of approach images to Monterey Regional Airport and incremental adjustments to 

the upper and lower limits revealed the appropriate threshold range, as defined in 

Equation 1.2. 

 

Hue = (0 0.440) (0.700 1)

Sat   = (0 0.200)

Val  = (0.637 1)

h h

s

v

    
 

 
  (3.1) 

The hue range includes all portions of the color wheel except those in the blue to 

cyan range. Excluding these hues is an efficient way to eliminate clutter and noise 

commonly resulting from the sky. Future applications in aircraft control may use the sky 

and the horizon line as aids to determine attitude and elevation, but these aspects are 

irrelevant to the runway localization and detection process. 

The saturation limits range from 0.00 to 0.200 because runway markings are 

always white or light gray, which correspond to lower saturation values. The runway and 

taxi surfaces are made from concrete and asphalt, which will generate lower saturation 

values in images, thus aiding the localization process. This tends to create contrast with 

the surrounding environment, which usually includes saturated colors found in trees, 

grass, and other common airport environments. 
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The value limits favored brighter colors that highlight the white runway markings. 

For runways with black asphalt surfaces, the distinction between the markings and the 

runway surface is clear, making value thresholding even more useful. The distinction 

between markings and the surface is less clear on runways with lighter concrete surfaces, 

which slightly dilutes the effect of value thresholding.  

Thresholding effectiveness is lowest at either extreme, both long and short, with 

performance at mid-range proving to be the most accurate. A comparison of long, 

medium, and short-range thresholding is illustrated in Figures 13 and14.  

 

Figure 13.  Original Approach Images at Long, Medium, and Short Range 

 

Figure 14.  HSV Threshold Images for Long, Medium, and Short Range 

There is a large deviation in the results of the thresholding process. In some cases, 

thresholding will only capture the runway markings. In other cases, it will capture the 

entire runway as well as portions of the environment surrounding the runway. Both 

scenarios are acceptable as long as the thresholding process generally localizes the 

runway and eliminates large portions of unnecessary information from the image. Ideally, 

the resulting binary image will only include the runway markings on and around the 

runway, but an exact solution at all ranges and in all environments is impossible to 



 25

achieve. The next step, which applies morphological operations, will work to normalize 

the result of the thresholding process. 

B. MORPHOLOGICAL OPERATIONS 

This section provides a brief description of the purpose of morphological 

operations and an overview of the primary operations and functions used in the 

algorithm. 

1. Background and Purpose 

Morphology aids in the identification and analysis of shapes within an image 

(Dougherty and Lotufo 2003). The objective of image processing is often to identify or 

preserve some boundary, area, or region, which makes morphology invaluable to the field 

of computer vision. Some of the first uses of morphology date back to experimentation 

by Kirsch, Cahn, Ray, and Urban (1957), in which computer code completed several 

image pre-processing steps, removing humans from time-intensive operations. From 

those foundations, the process and purpose behind morphology largely remains the same. 

In the context of this research, the purpose of morphology is to further localize the 

runway area and capture the outline of the runway and any markings on the surface. 

2. Erosion and Dilation 

The two basic morphological operations are erosion and dilation. Traditionally, 

algorithms use these operations on binary images to identify shapes and regions more 

accurately. Working with binary images also decreases complexity as matrix operations 

only include ones and zeros. 

Dilation is the process of enlarging a shape or region within an image by 

expanding the boundary of that shape (MathWorks 2017i). The number of pixels used to 

enlarge the region depends on the structuring element used in the dilation process 

(MathWorks 2017i). For MATLAB functions, the dilation rule states, “the value of the 

output pixel is the maximum value of all the pixels in the input pixel’s neighborhood” 

where the output pixel and neighborhood pixels are determined by the shape and size of 

the structuring element (MathWorks 2017i). Dilation can recapture portions of an image 
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that may have inadvertently been lost in pre-processing steps. An example of two shapes 

dilated by a 30x30 square structuring element is shown in Figure 15. 

 

Figure 15.  Example of Dilation Operation with 30x30 Square Structuring Element 

Erosion is the contrasting morphological operation, where the boundary of a 

region is reduced, thus shrinking the area of the shape (MathWorks 2017i). In this 

scenario, the minimum value within a neighborhood of pixels defined by a structuring 

element determines the value of the output pixel (MathWorks 2017i). Erosion eliminates 

noise and unwanted clutter in an image. An example of the erosion operation with a 

30x30 pixel square structuring element is shown in Figure 16. 

 

Figure 16.  Example of Erosion Operation with 30x30 Square Structuring Element 
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3. Opening and Closing Operations 

Opening and closing operations combine the erosion and dilation processes to 

improve the image while preserving the shape and boundary of the objects of interest. 

This is specifically useful when the objective is elimination of noise and clutter. 

The opening operation is the sequential application of erosion followed by 

dilation. Erosion will eliminate smaller, unwanted binary regions and dilation will restore 

the region of interest to its original size. An example of clutter elimination is shown in 

Figure 17, with a square structuring element used to preserve the square shape of the 

region of interest. 

 

Figure 17.  Opening of an Image with 20x20 Square Structuring Element 
to Eliminate Clutter 

Closing involves the sequential application of dilation and erosion. The most 

common use for the closing operation is to remove gaps or holes in a region of interest. A 

simple example of this application is illustrated in Figure 18, where a 20x20 square 

structuring element fills gaps in a rectangular region. 
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Figure 18.  Closing of an Image with 20x20 Square Structuring Element to Fill Gaps 

4. Application in Runway Detection Algorithm 

For demonstration purposes, a final approach image taken approximately 

37 seconds from touchdown will demonstrate the result of morphology in the context of 

this algorithm. The original image and thresholded image are shown in Figure 19. 

 

Figure 19.  Original and Thresholded Image for Use in Morphological Operation 
Demonstration 

The first operation was a filling operation available in MATLAB’s image 

processing toolbox labeled “imfill” (MathWorks 2017a). The function acts as a closing 

operator, filling in gaps or spaces in enclosed regions within a binary image. The result of 

this step is illustrated in Figure 20. 
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Figure 20.  Image Produced after Executing “imfill” Function in MATLAB 

With all holes filled in the binary regions of the image, the next step is to 

eliminate noise and clutter. An opening operation is used to eliminate the smaller clusters 

of pixels that passed through the threshold process but do not contribute to runway 

localization. MATLAB’s “bwareaopen” function, also included in the image processing 

toolbox, was used to accomplish this task (MathWorks 2017b). This function uses the 

opening operation to eliminate pixels below a defined threshold area. The runway 

detection algorithm uses an area threshold of 30 pixels for the opening operation, which 

was determined through a process of trial and error. Thirty pixels will eliminate most 

noise but retain all areas on or near the runway. The final product of the “bwareaopen” 

operation is shown in Figure 21. 

 

Figure 21.  Image Produced after Executing “bwareaopen” Function in MATLAB 
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It is apparent in Figure 21 that some of the markings on the runway surface 

were lost in the morphology process. This is acceptable because the primary objective 

is to identify the runway edges and later stages of image processing can recapture 

lost features. 

Dilation is the next morphological operation applied to the binary image. The 

objective of this final step is to recapture any area of the runway that were lost or 

eliminated in previous steps. The dilation operation uses a vertical, rectangular 

structuring element, as runway markings and components are typically vertically oriented 

rectangles. The result of this process is illustrated in Figure 22.  

 

Figure 22.  Image Produced after Executing Dilation with 10x4 Vertical 
Structuring Element in MATLAB 

Ideally, dilation will capture the complete outline of the runway with no breaks or 

gaps, as shown in Figure 22. However, the algorithm will occasionally fail to capture 

every portion of the runway edge and surface. A robust design and redundancy 

throughout the algorithm will allow later steps to either correct the mistake or overcome 

the lack of data. 

The final operation is a second iteration of the “imfill” function, which refines the 

morphology output (MathWorks 2017a). If the algorithm identifies the entire perimeter of 

the runway without gaps or breaks, the second filling operation will fill the interior 



 31

surface of the runway, an added benefit for the creation of an image mask. The result of 

the second iteration of the “imfill” function is shown in Figure 23 (MathWorks 2017a). 

 

Figure 23.  Image Produced After Executing Second Iteration 
of “imfill” Function in MATLAB 

C. IMAGE MASKING AND FILTERING 

This section covers the masking and filtering steps in the runway detection 

algorithm. Included are descriptions of each process, the purpose and justification for 

each step, and a brief overview of the types and sources of noise common to images. 

1. Image Masking 

Image masking is a process that captures a desired portion of an image while 

setting all other background pixels in the image to zero, or black. For the runway 

detection algorithm, the resulting binary image from the morphology process serves as 

the mask for the original runway image. Filtered sections of the original runway image 

will replace any white sections of the binary image that remained after thresholding and 

all morphological operations. In other words, image masking merges the binary image 

with the filtered version of the original image. This concept is best illustrated by Figure 

24, in which the final masked image is displayed. 
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Figure 24.  Image Mask of Binary Image and Median Filtered Runway Image 

Aside from a few areas of clutter, the final product should include the runway 

region with as many markings visible on the surface as possible. An accurate image 

mask will lead to improved edge detection and line detection via the Hough transform at 

later stages. 

Naturally, the algorithm will not always work perfectly and portions of the 

runway will be missing from the final image mask. However, this should result in failure. 

Even with partial data, the algorithm can achieve accurate detection of the runway edges. 

Designing a robust detection algorithm requires that varying degrees of accuracy must be 

acceptable at the image mask stage. Multiple examples of less accurate image masking 

results are shown in Figure 25. All of these images successfully resulted in accurate 

runway detection. At minimum, the image mask should at least include the edges of the 

runway, from start to finish, without breaks. 

 

Figure 25.  Examples of Various Levels of Image Mask Accuracy 
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2. Image Filtering 

Image filtering is a pre-processing technique to eliminate noise in an image. There 

are a number of approaches to filtering, each effective at handling various levels and 

types of noise. Choosing an appropriate filter involves analyzing the type of noise 

affecting an image and determining acceptable computation time. Specifically, this 

research considered the effects of three types of noise: Gaussian, salt and pepper, and 

quantization noise. 

Gaussian noise is random additive noise that follows a Gaussian distribution and 

affects all pixels in an image (Dangeti 2003, 6). Internal components and processes of the 

camera, such as amplification, typically introduce Gaussian noise (Patidar, Gupta, 

Srivastava, and Nagawat 2010, 46). Due to its pervasiveness, all image processing 

algorithms should account for Gaussian noise. 

Salt and pepper noise is a series of intensity spikes that randomly affect an image 

(Dangeti 2003, 7). The affected pixels will assume either a maximum or a minimum 

value as a result of malfunctions in the sensors of the camera or errors in the analog-to-

digital conversion process (Dangeti 2003, 7). The name is derived from the salt and 

pepper spikes that are evident in the final image as the noise results in either white or 

black pixels. Again, salt and pepper noise is a common issue in image processing and 

computer vision so efforts should be made to reduce its effects. 

Quantization noise occurs during image compression, which is required for JPEG 

images. The final approach images used for this research were stored in JPEG format in 

order to store a vast quantity of images; therefore, quantization error was a concern. The 

conversion process compressed 8x8 blocks of pixels resulting in the loss of information 

and a subsequent blocking effect in the image (Quijas and Fuentes 2014, 1). The more the 

image is compressed, the more apparent the blocking effect (Quijas and Fuentes 2014, 1). 

There are many image filtering techniques available and the techniques grow in 

number and complexity as the field of image processing advances. This research 

considered two filtering methods, the mean filter and the median filter. These time-tested 

and proven techniques provide solutions to a number of image processing issues and they 
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are relatively simple in application. Effectiveness and computation time were the 

evaluation factors for each filter. 

The mean filter averages the intensity values of a predefined window of pixels 

and replaces the center pixel, the pixel of interest, with that average value (Dangeti 2003, 

12). This results in a smoothing or blurring effect across the image that eliminates 

random noise. The result depends on the severity of the noise as well as the size of the 

chosen filter. Larger filters will result in more smoothing or blurring (Dangeti 2003, 12). 

Median filtering works in much the same way but it is a nonlinear process 

(Dangeti 2003, 18). The median filter also uses a predetermined window size to evaluate 

neighboring pixels, but the median value from the neighborhood replaces to center pixel 

of interest (Dangeti 2003, 18). This also has a blurring effect on the image. The 

advantages of the median filter are twofold. First, it is more robust in the sense that it 

eliminates outliers, as is true of any process that uses medians instead of means (Dangeti 

2003, 19). Many also argue that the median filter is better suited for edge preservation 

because it must use the value of an actual pixel from the neighborhood (Dangeti 2003, 

19). As there is not much difference between computation time for the mean and median 

filter, these advantages make it the better choice for application in the runway detection 

algorithm. Runway edge detection is the primary goal, so edge preservation should be a 

valued characteristic for a filter.  

To reduce processing time, median filtering should apply only to the image mask, 

so only select regions of the image require computation. However, selective application 

of the filter is difficult and time intensive in MATLAB, so the algorithm filters the full 

original image prior to masking for proof of concept. The result of applying the 

“medfilt2” MATLAB function for a 3x3 neighborhood is shown in Figure 26 

(MathWorks 2017c). The filter reduced noise levels within the image at limited expense 

to the runway edges and markings. An unfortunate consequence of median filtering is 

that the algorithm must first convert the original image to a grayscale image because it 

only filters pixel intensity values, thus adding additional computation time. Again, real-

time application should only apply median filtering to the required areas of the image 

mask; this section only models the result of filtering due to constraints in MATLAB. 
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Figure 26.  Intensity Comparison for Unfiltered and Filtered Runway Images 

D. IMAGE SHARPENING 

Image sharpening is yet another fundamental operation in image processing. This 

section provides a brief overview and background of the process, its purpose in the 

context of edge detection, and its formal application in the algorithm. 

1. Background, Description, and Purpose 

Image sharpening is a technique used to improve detail within an image, 

particularly textures and edges. Unsharp masking, a common sharpening technique, 

intentionally blurs the original image, usually through Gaussian blurring, and subtracts 

the blurred copy from the original image (Cambridge in Colour 2017). MATLAB 

sharpening functions allow the user to control the radius of the Gaussian filter as well as 

the threshold for determining edges. A larger radius will affect a larger area around edges 

and higher thresholds will only apply the filtering effect to stronger lines within the 

image (MathWorks 2017d). If the unsharp masking process identifies an edge that meets 

the threshold, the filter sharpens the edge by an amount defined by the user. This 

“amount” setting affects the acuteness of edges, which is a measure of edge transition 

from dark to light (Cambridge in Colour 2017). Higher acuteness leads to a sharper 

transition, hence the name of the operation. An application of unsharp masking is 

demonstrated in Figure 27, where an image was intentionally blurred with a Gaussian 

filter and sharpened using MATLAB’s “imsharpen” function from the image processing 

toolbox (MathWorks 2017d). 



 36

 
Gaussian blurred image (top left), sharpened image (top right), magnified view of blurred 
image edge (bottom left), and magnified view of sharpened image edge (bottom left). 

Figure 27.  Demonstration of Unsharp Masking Using a Gaussian Blurred Image 

The unsharp masking process uses the intensity values of an image, but the output 

image can be in both color and grayscale. The function will simply convert the image 

between color spaces to meet the requirement. Figure 27 shows an ideal image 

sharpening process, with an edge between a perfect white background and a perfect black 

object. Real application of unsharp masking will almost never meet these ideal conditions 

but the process is still effective. For the runway detection algorithm, image sharpening is 

necessary because edge preservation is crucial for final application of the Hough 

transform. Without clear, defined edges, the edge detection process and resulting Hough 

transform calculation will not be accurate. The filtering process, while necessary, 

introduces additional blur to the image that sharpening can reduce. Although median 

filtering preserves edges to some extent, image sharpening refines all the major edges 

within the image and prepares the processed image for the final stages of runway 

recognition and detection. 

2. Application in Algorithm 

The objective of image sharpening in the context of the detection algorithm is to 

increase edge sharpness for lines on the runway while limiting the sharpening effect for 
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all other irrelevant areas. Variation of the radius, threshold, and amount inputs will 

achieve this objective. Ideal sharpening will only affect a small area around the edge of 

interest, so a smaller radius is ideal. The default radius of 1 pixel was used because it is 

an agreed upon standard and experimentation with lower and higher values yielded no 

improvement. Low thresholds will capture unnecessary details and textures within an 

image but excessively high thresholds will not effectively sharpen any edges. The 

thresholding and morphology steps executed prior to sharpening have eliminated most of 

the unnecessary regions in the image. For this reason, the algorithm uses a threshold limit 

of zero, accepting introduction of some noise as a result. The amount must be sufficient 

to highlight the edges within an image but not so high that the overshoot between the 

light and dark transitions of the line becomes unnatural or counterproductive to detection 

(Cambridge in Colour 2017). Through trial and error, the amount argument was set to 5, 

which significantly increased the sharpness of the runway edges without unnatural 

distortion in the image. The final product is shown in Figure 28. 

 

Figure 28.  Comparison of Unsharpened and Sharpened Runway Image 
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IV. FRAMEWORK AND METHODOLOGY: LINE EXTRACTION 
AND ERROR CORRECTION 

This chapter describes the edge detection methods and line extraction functions 

specifically chosen to identify the runway edges within an image. It includes a complete 

analysis and comparison of relevant edge detection methods as well as a detailed 

overview of the Hough transformation process. 

A. EDGE DETECTION 

Edge detection is the final step before applying the Hough transform and 

calculating the position of the runway edges. This section provides a brief overview of 

edge detection, its purpose, and the various techniques used for edge detection. Also 

included are a comparison of methods and the justification for use of the Sobel operator. 

1. Overview and Purpose 

In a study and comparison of various edge detection techniques, Maini and 

Aggarwal (2009, 1) describe edge detection as “the process of identifying and locating 

sharp discontinuities in an image.” These discontinuities are the points at which the 

intensity of an image changes, indicating the start or end of an edge (Maini and Aggarwal 

2009, 1). The general approach to edge detection involves convolving a square operator 

with an image that detects these discontinuities and returns a binary image displaying all 

detected edges (Maini and Aggarwal 2009, 1). Gradient operators work by detecting the 

maximum and minimum values of the derivative of intensity values while Laplacian 

detection uses the second derivative to detect edges (Maini and Aggarwal 2009, 2). 

Laplacian methods are inherently more computationally intensive and adversely affect 

real-time detection, so this research ignores Laplacian methods in favor of gradient 

operators. 

2. Comparison of Edge Detection Techniques 

With the elimination of Laplacian methods, the two most popular gradient 

methods, the Sobel operator and the Canny algorithm, remain. The Sobel method 
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convolves a 3x3 gradient operator, shown in Figure 29, with the original image (Sobel 

2014). The gradient operator sums the gradient values of orthogonal vectors resulting in a 

magnitude and direction value for a given neighborhood (Sobel 2014). The user can 

therefore detect lines along a specific gradient, usually broadly categorized as horizontal 

or vertical, as well as lines of a certain magnitude. At the time of its inception, the Sobel 

operator was notable for its performance with other available edge detection techniques 

and its superior computation time. Developments in edge detection over the years have 

led to its new label as a traditional and simple edge detection technique, but the Sobel 

method still merits widespread attention and application in the image processing field. 

More involved than the Sobel method, the Canny method is actually a combination of a 

several processes. It vastly increases accuracy while maintaining an acceptable level of 

complexity. The algorithm achieves three objectives as outlined by Canny: low-error rate, 

accurate localization, and a single response to each edge (Maini and Aggarwal 2009, 6). 

The general process for the Canny method is as follows: application of a Gaussian filter, 

convolution with a gradient operator, calculation of gradient magnitude and direction, 

line thinning via non-maximum suppression, and hysteresis to eliminate any gaps in the 

edge (Maini and Aggarwal 2009, 6–8).  

 

Figure 29.  Vertical Sobel Operator (left) and Horizontal Sobel Operator (right) 

The Sobel and Canny methods share many of the same advantages and 

disadvantages. They are popular because they are simple to use and they can each capture 

edge direction and magnitudes. However, both are somewhat inaccurate and less robust 

than more complex edge detection techniques. When comparing the two methods, the 

Sobel operator is more computationally efficient, whereas the Canny method is more 
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accurate. Determination of the appropriate method depends on the trade-offs between 

advantages and disadvantages and the role and scope of edge detection in the greater 

system. The Sobel operator was the favorable method in this research for its simplicity 

and computational efficiency. Many of the steps taken in the Canny method were 

unnecessary due to previous image processing steps. For example, the Gaussian filter 

applied by the Canny method would be redundant and it would undo many of the 

favorable effects of the sharpening process. The difference between the two methods is 

best illustrated by their outputs, which are displayed in Figure 30. Each method was 

implemented in MATLAB with a vertical filter and threshold set to 0.015. 

Figure 30.  Comparison of Sobel Edge Detection (left) 
and Canny Edge Detection (right) 

3. Application in Algorithm

The algorithm used Sobel edge detection via MATLAB’s “edge” function from 

the Image Processing toolbox. This function allows the user to specify the edge detection 

technique as well as a series of input arguments including threshold, direction, and 

thinning (MathWorks 2017e). The threshold for the Sobel operator was set to a 

magnitude of 0.015. Through trial and error, the author determined that this value 

performed best at all ranges. The direction was set to vertical, which executed 

convolution with the vertical Sobel operator. For final approach images, the runway 

direction should align with the vertical axis of the frame. Resulting binary images from a 

variety of ranges are shown in Figure 31. 
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Figure 31.  Sobel Edge Detection on Runway Images at 
Far, Medium, and Close Ranges, Respectively 

B. HOUGH TRANSFORM 

This section provides a brief background to the invention and development of the 

Hough transform, ultimately leading to its importance in the modern field of computer 

vision. Also included is an explanation of the transformation process and its application 

in the runway detection algorithm. 

1. Background 

Paul Hough first introduced the concept of the Hough transform as a means to 

detect patterns created by subatomic particles in a bubble chamber (Hough 1962, 3). The 

motivation behind the Hough transform was to reduce the amount of time required to 

analyze photographs of the particle by allowing machines to analyze the pictures and find 

patterns (Hough 1962, 3). This motivation makes this process well suited for analyzing 

runway approach images in real-time. Hough’s patent describes a plan to transform 

points in a Cartesian plane into the slope-intercept parameter space in which intersection 

points would correspond to lines in the Cartesian plane (Hough 1962, 3). If the objective 

of image analysis is line or pattern detection, the Hough space makes the process much 

less time intensive. Patterns of interest become points of intersection in the Hough space, 

reducing what would normally be a complex and time-intensive search of the Cartesian 

plane. 

Richard Duda and Peter Hart (1972, 2) improved the Hough transform by using 

polar coordinates to describe points in the parameter space via Equation 1.3. 

 co sinsx y      (4.1) 
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This eliminates the possibility of undefined or infinite slopes in the slope-

intercept plane (Duda and Hart 1972, 1). The transformation to the polar parameter space 

is illustrated in Figure 32. Hart and Duda (1972, 4) were also able to establish the 

following rules for the transformation: all points in an image frame correspond to a 

sinusoid, points in the parameter space are straight lines in the image, and points on the 

same line in the image frame will share a common point in the parameter space. This 

improvement to the Hough transform makes it extremely applicable in image processing 

and computer vision. Undefined lines in the parameter space become a non-issue and 

image processing algorithms need only to find peaks in the Hough space to identify lines 

in the image plane. The more sinusoids intersecting at a single point, the stronger the 

peak, and the longer and more defined the edge or line. Most computer vision algorithms 

use Hart and Duda’s adaptation of the Hough transform. 

 

Figure 32.  Transformation from x-y Image Plane to ρ-θ Parameter Space 

2. Application in Algorithm 

The Hough transform is the optimal process for identifying runway edges in an 

image. Considering its objective, the Hough transform is relatively efficient and it offers 

value in a real-time detection environment. The key to further reducing computation time 

is to limit the number of edges detected by the Sobel operator. Any clutter or excess lines 
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will only degrade accuracy and add to computation time. This is why the thresholding, 

morphology, and sharpening steps are so crucial to improving accuracy and efficiency. 

The Sobel edge detected image serves as the input to the Hough transform 

process. As with most processing steps, binary images with clear delineations between 

edges and limited noise provide accurate results. The “hough” command in MATLAB 

will perform the Hough transform, using the binary image as the input and producing a 

matrix that describes the Hough space with rho and theta values (MathWorks 2017f). For 

added accuracy and error reduction, the search of the image plane and the resulting 

Hough space is limited to theta values between -35 and 35 degrees. This means that the 

lines the Hough transform seeks to detect are vertical lines, with extra room to allow for 

variations in aircraft position relative to the runway in the final approach stage. The 

parameter space and the associated binary input image are shown in Figure 33. Each 

sinusoid corresponds to a pixel in the binary image and all possible lines passing through 

that image from -35 degrees to 35 degrees. 

 

Figure 33.  Binary Input Image and Rho/Theta Hough Parameter Space 

A cursory glance at the Hough space will indicate a few likely intersection peaks 

corresponding to lines in the image plane. Points of specific interest are located near the 

negative 25-degree mark and the 25-degree mark in Figure 33. For the runway edges, two 

responses of similar magnitude but opposite angles are indications of an accurate match. 

If the aircraft is lined up with the center of the runway, the angles made by both edges of 
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the runway will be the same magnitude. In fact, these runway angles can aid in the 

estimation of aircraft roll positions. These peak intersection points are highlighted by 

yellow boxes in Figure 34 by using the “houghpeaks” command in MATLAB 

(MathWorks 2017g). This command is useful because it allows the algorithm to focus on 

a predetermined number of peaks. The two peaks with the largest number of intersections 

are most likely the runway edges, but this may not always be the case. For this reason, it 

is a good practice to analyze the top 5–7 peaks in the image, depending on the amount of 

noise and clutter. 

 

Figure 34.  Hough Space with Top Peaks Highlighted 

For the example shown in Figure 34, the top two peaks do correspond to the 

runway edges, but to prove this, the algorithm must convert the points back to lines in the 

image frame. To do this, the MATLAB function “houghlines” uses the peaks returned 

from the “houghpeaks” function to extract the appropriate rho and theta values that the 

function then into x–y plane values (MathWorks 2017h). Overlaying the resulting Hough 
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lines on the original runway image proves that the lines do accurately correspond to the 

runway edges, as shown in Figure 35.  

 

Figure 35.  Runway Image with Hough-Detected Lines Overlaid 

Using a binary image collected via the Sobel method, the Hough transform can 

accurately detect the edges of a runway. The remaining challenge lies in correcting error 

and implementing the visual feedback in a control system. 

C. ERROR DETECTION AND ADJUSTMENT 

Error adjustment is critical to the success of the runway detection algorithm. If the 

algorithm is to be used in a real-time environment, it must achieve a high degree of 

accuracy. This section describes the process used to detect and correct errors within the 

algorithm. 

1. Detection Issues Using the Hough Transform 

The algorithm, as described in the previous sections, is robust; however, it will 

not provide total accuracy in all final approach scenarios. Attempting to pinpoint runway 

edges from a camera attached to a vibrating, high-speed vehicle is an inherently complex 

process. Issues are plentiful and experimentation with thousands of frames of final 

approach images exposed some of these problem areas. 
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As previously stated, the accuracy and speed of the Hough transform depends on 

the accuracy of the preceding steps of the algorithm. If thresholding and morphology can 

remove clutter and capture the entirety of the runway, then the Hough transformation 

becomes much simpler and more accurate. However, often the environmental conditions 

and image noise levels make detection much more difficult and simple operations such as 

thresholding, morphological opening, and closing are not suited nor were they designed 

to handle such complex scenarios. Therefore, noise and clutter in the input binary image 

are inevitable. Distance and environmental conditions that negatively affect visual range, 

such as clouds or fog, are common sources of these issues. 

Even in ideal conditions, the Hough transform can provide false outputs. 

Combinations of noise and pixel alignment may result in peaks in the Hough transform 

that do not correspond to any edge or runway line at all. This example is illustrated in 

Figure 36. Clutter and noise in the center of the runway caused the algorithm to fail to 

identify the right runway edge. For unavoidable situations like this, added error detection 

and correction is required. The challenge lies in reproducing human-like error corrections 

in an automated process.  

 

Figure 36.  Inaccurate Runway Edge Detection via the Hough Transform Method 

2. False Runway Edge Detection Adjustment 

The algorithm tests for a series of conditions to ensure that the identified edges 

are correct. The first condition tests the proximity of the runway endpoints for both the 

right and left edges. Although the distance between these points will vary depending on 
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image resolution and distance from the runway, the algorithm defines a “no closer than” 

distance that indicates one or both of the edges are incorrectly identified. This “no closer 

than” distance is 20 pixels or less in the positive or negative x-direction. This distance 

represents half the distance between the runway edges in the image taken at the farthest 

point in the final approach of the aircraft. Therefore, there is no scenario in which the 

distance between runway edges should be any smaller. However, this value will also 

depend on camera properties such as resolution and stored image size so variation based 

on equipment and operating conditions is acceptable. 

The second error scenario tests for distances between the runway endpoints that 

are too large. The algorithm considers any distance between the far runway endpoints 

greater than 150 pixels in the x-direction or 40 pixels in the y-direction as too large. The 

largest distance between the far endpoints in any frame on the final approach data was 

100 pixels, so a value of 150 is provides a reasonable buffer. The far runway endpoints 

are the best choice for distance evaluation because there is less fluctuation in their 

separation compared to the closer runway endpoints. The separation between the runway 

start points can vary from 50 pixels at long distances to nearly 350 pixels near 

touchdown. The far runway endpoints simply provide a narrower range and reasonable 

values for error testing. 

The algorithm begins by assuming that the top two peaks in the Hough space 

represent the runway edges. If any of the previous error conditions are satisfied, the 

algorithm revisits the Hough space and analyzes the top six Hough peaks to find the 

correct runway lines. The system then compares the top Hough peak to the remaining 

four peaks and tests the runway endpoints for the same error scenarios. When the 

algorithm identifies two lines that meet the given conditions, these become the identified 

runway edges for the frame. If no matches are found, the algorithm simply chooses the 

top two peaks and accepts the error, assuming that later error correction steps will limit 

the impact. The system does not conduct a more extensive search of the Hough space 

because it would result in unacceptable increases in computation time. Unfortunately, this 

means that the algorithm might have to accept a certain level of error in the process. 
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An added layer of error correction comes in the form of averaging. As the 

algorithm detects the runway endpoints, it stores the values in a matrix that holds the 

previous 15 values. When enough points are stored in the matrix, the algorithm averages 

the current endpoint positions with the previous values. This limits the effect of any 

errors that made it through the previous endpoint-checking stage. It also smooths the data 

to limit small disturbances. It is important to remember that the camera collecting the 

data is attached to the wing of the aircraft, which is exposed to mechanical vibrations and 

turbulence from the environment. This inherent shaking is visible in sequential viewing 

of the approach frames. The motion of the aircraft results in noticeable changes in 

endpoint position. Smoothing the data will be essential in a control system environment. 

Averaging acts as a low pass-filter, which eliminates small fluctuations that will 

negatively affect the performance of the aircraft control surfaces. If the control system 

receives constantly fluctuating position data from the runway detection algorithm, the 

control surfaces in the aircraft will also constantly fluctuate. Depending on the aircraft 

characteristics and flight dynamics, this fluctuation can reasonably result in a failure to 

land. Therefore, averaging frames is a good practice for future applications of the 

algorithm. Additionally, the camera captures images at 24 frames per second, so the 

algorithm is averaging the data in intervals shorter than one second. This should still 

provide a quick enough update rate to suit the control surfaces of the aircraft. 

The matrix used to store runway data also allows the system to compare 

corresponding endpoint positions between frames. In other words, if the algorithm 

identifies a runway edge in which any of the points significantly differs from that of the 

previous frame, the system will detect an error. Specifically, if any of the endpoints falls 

outside a radius of 10 pixels from the previous endpoint, the algorithm detects an error 

and replaces the current endpoint values with those of the previous frame. To ensure the 

system is not caught in a loop of ever-increasing errors, the matrix will reset if the system 

detects more than seven errors in a row. 

With all of these error-reducing measures combined, the accuracy of the system 

improves significantly. Depending on the nature of the operational conditions, the 

aircraft, and the camera, the details of the error detection conditions may vary. However, 



 50

the framework can be applied universally. The error correction capabilities of the 

algorithm are illustrated in Figure 37, where uncorrected and corrected versions of the 

same frame are shown side by side. 

 

Figure 37.  Uncorrected (left) and Corrected (right) Versions of the Same Runway 
Approach Frame 
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V. RESULTS AND ANALYSIS 

This chapter reviews the performance of the runway detection algorithm based on 

accuracy and processing time. It will also provide analysis on which operations had the 

greatest effect on the overall performance of the algorithm. 

A. ACCURACY 

The algorithm processed 3000 images from a final approach in a Cessna 206 to 

Monterey Regional Airport. In total, this data covers approximately one minute and 

40 seconds of flight time. The first and final frames are shown in Figure 38 for visual 

reference. 

 

Figure 38.  First (left) and Last (right) Images Used for Algorithm Evaluation 

This research defines accurate runway detection as identification within a 10-pixel 

radius of the true starting or ending points of the runway. For an image taken at medium 

range, a 10-pixel shift in the position of both the start and end points could change the 

estimated runway angle by three degrees and the estimated runway length by 10 percent. 

These are the maximum levels of acceptable variation that could still reasonable lead to 

safe landing conditions. Additionally, the runway edge must include no breaks or gaps 

along the length of the runway. 

In a test of all 3000 frames, the algorithm incorrectly identified the runway in 

114 frames, which corresponds to an accuracy of 96.2 percent. Four additional tests 
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ensured the accuracy of the results. This test also utilized the error correction techniques 

of the algorithm. The accuracy of the detection algorithm without the error correction 

techniques was 75.9 percent. 722 frames of the original 3000 frames did not meet the 

accuracy standards, most of which were frames near the end of the final approach. This 

indicates the relative importance of the error correction process. It also indicates the 

negative effect that low altitude has on the detection algorithm. At lower altitudes, the 

runway consumes more of the image and its shape is comparatively more distorted than 

those at higher altitudes. 

Frames that led to inaccurate detection of the runway had a few commonalities, 

the first of which is being taken from either extremely long or extremely short distances. 

The majority of the errors came from frames at the beginning or end of the runway data, 

which means that long or short distances and high or low altitudes degrade the 

performance of the image processing algorithm. The altitude ranges along the flight path 

at which accuracy decreases is shown in Figure 39.  

 

Figure 39.  Accuracy Error Related to Altitude and Heading 

At long distances, the most likely source of error is noise and environmental 

interference. Even in near-perfect visibility conditions, the clearness of the image will 

only improve as the distance becomes shorter. For the algorithm, this means that edges 
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are less delineated and sections of the runway can blend in with the surrounding tarmac 

of the airport. At shorter distances, the aircraft is closer to the ground and the view of the 

runway is comparatively distorted. Generally, these frames only include the concrete and 

asphalt surfaces of the runway and the horizon line. Saturation and value characteristics 

become increasingly more important at these distances as a result. Losing differentiation 

in hue will undoubtedly result in a loss of accuracy. It is also apparent that the runway 

endpoints approach the vanishing point in the image at shorter ranges. As a result, the 

endpoints become even more difficult to identify. The image frames that correspond to 

the start of processing degradation are shown in Figure 40.  

 

Figure 40.  Maximum (left) and Minimum (right) 
Distance for Image Processing Degradation 

Clutter was also a common factor in incorrectly identified frames. Often larger 

and brighter elements near the runway, such as buildings, would pass through the 

filtering and morphology steps. If these elements happened to align with one of the 

runway edges and they were close enough to the runway surface, the algorithm often 

identified the clutter as continuations of the runway edge. Normally, the error correction 

process will identify these errors, but sometimes there are no alternative peaks in the 

Hough space to replace the false peaks. 

There is room for improvement in accuracy, and the level of accuracy will depend 

on the application of the algorithm. If the system is intended for use on smaller, easily 

controllable aircrafts and large runways, accuracy is not as much of an issue. Application 
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in an aircraft carrier environment would require nearly perfect accuracy. These are 

extensions of the system in which the operator may need to make adjustments to achieve 

increased accuracy, but this research proved that the basic framework can operate at a 

successful level. 

B. PROCESSING TIME 

MATLAB scripts and functions are not always conducive for evaluation of real-

time application. An aircraft would never use a MATLAB environment to implement 

real-time computer vision and aircraft control. MATLAB functions often call upon 

various toolboxes and sub-functions that require additional loading times. Sometimes 

MATLAB loads and implements subroutines in C or C++ to execute a function, as is the 

case for the filtering operations. However, it is much easier to demonstrate the framework 

and methodology in MATLAB. MATLAB can still offer insight and broad implications 

for real-time evaluation. Therefore, this discussion will only offer recommendations for 

reducing processing time based on MATLAB execution. 

Data collected from five approach frames processed five times each revealed 

patterns as to which functions and operations consume the most processing time. The 

images vary in their distance from the runway to avoid bias due to distance. The “imfill” 

function, median filtering, and image sharpening were consistently the top three time-

consuming processes. These are all matrix operations or convolution processes that 

must calculate values for every pixel in the image so it is not surprising that they are the 

most computationally inefficient. On average, the filling, sharpening, and filtering 

operations consume 11.2 percent, 10.5 percent, and 10.2 percent of the total processing 

time, respectively.  

A possible explanation for the computation time of the “imfill” function is that it 

is not a true closing operation. It is a hybrid function that uses a more complex technique 

to fill in holes in binary regions of the image (MathWorks 2017a). The algorithm also 

uses two iterations of the “imfill” function, further explaining its increased processing 

time. While the computation is time consuming, it is still worthwhile to include both 

iterations of the morphological operation.  
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Image filtering is difficult to avoid, but limiting the area that requires filtering is a 

good practice for cutting computation time. The equipment used is also vital for the 

determination of the level of noise the algorithm must handle. Some cameras can provide 

clearer images with less noise, but they will come at a cost. Strategic placement of the 

filtering process in the algorithm will ultimately determine its efficiency. If implemented 

after all morphological operations and masking, filtering will be much more 

computationally efficient. 

Image sharpening is the only process that could reasonably be removed from the 

algorithm, but only if conditions allow. Again, this is largely a factor of the operating 

environment, specifically the visual conditions, and the level of noise due to camera 

operations. With these factors reduced below an acceptable level, the algorithm can 

reasonably provide accurate results without the sharpening process. However, achieving 

those conditions is not easy, and it will likely be expensive. Efficient use of the 

sharpening threshold and amount settings can further reduce the computation time if 

sharpening is still necessary. 
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VI. CONCLUSIONS 

This chapter offers a comprehensive review of the research objective and focus, 

the framework and methodology of the runway detection algorithm, and results. It also 

offers lessons learned from the process and options for future work. 

A. REVIEW OF RESEARCH QUESTION 

The objective of this research was to conduct a feasibility study for the 

application of a runway detection algorithm for use in a vision-based autonomous landing 

system via a systems engineering approach. The system should be evaluated on its ability 

to detect the edges of a runway and any other relevant runway markings in an accurate, 

robust, and cost efficient manner. On a broader scale, this research assesses the feasibility 

and application of vision-based control in a broad array of autonomous systems. 

However, unmanned aerial vehicles propose a unique challenge to developing robust and 

autonomous decision-making systems. 

B. CONCLUSIONS 

Computer vision can accurately detect and track a runway in the final approach 

stages of flight. This research outlined a framework and methodology that proved its 

worth with an accuracy of 96.2 percent in final approach testing. Additionally, the 

framework supports real-time implementation in an aircraft control system.  

Applying computer vision techniques to runway detection and unmanned vehicles 

requires a system that is accurate, robust, and computationally efficient. An accurate 

algorithm will utilize a multi-stage approach that constantly works to localize the runway 

region and eliminate noise and clutter. The algorithm should also utilize error detection 

and correction techniques to avoid false positives or misidentification of runway edges. 

These layers of image processing steps add an aspect of redundancy to the algorithm and 

improve overall performance. 

A robust algorithm will be able to work at all distances expected in the operating 

environment, through various levels of noise, and in a degraded visual environment. It is 
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easy to construct an algorithm that will detect a runway in a very limited set of 

circumstances. The challenge lies in designing a system unaffected by external factors. 

Hue, Saturation, and value thresholding is a convenient way to increase robustness 

because it allows the algorithm to use more than just the intensity characteristic to 

localize the runway at limited computational expense. The more data available to the 

system, the more accurate it can be. Median filtering is also an efficient way to reduce 

Gaussian, salt and pepper, and quantization noise that will undoubtedly be present in an 

image. Combining these strategies will increase the operating range of the system. 

Lastly, a computationally efficient algorithm will accurately detect the runway 

edges in the minimum amount of time, ideally for implementation in real-time. If the 

algorithm limits the amount of noise and clutter in an image, it will reduce the 

computation time for operations that require convolution and other complicated 

procedures like the Hough transform. It is acceptable to sacrifice accuracy in favor of 

computation time if the results are still reasonably in the desired range, as is the case with 

using the Sobel operator instead of the more accurate Canny method. This framework 

strikes a delicate balance between efficiency and accuracy. 

C. FUTURE WORK  

Future work would primarily include implementation of pose and attitude 

estimation as well as the development of a full aircraft control system with visual 

feedback as outlined in Chapter I. By doing so, the feasibility study could be extended to 

the complete vision-based landing system. 

While this thesis conducted a thorough description and analysis of the image 

processing system within the constraints of the available data, the system still requires 

additional testing. Specifically, future work should collect data from a wide variety of 

runways and geographic locations to test the effects of background and clutter on the 

accuracy of the algorithm. Additional testing should also cover various light levels, 

degraded environmental conditions, different types of aircraft, varying speed, and varying 

glide slopes. If the landing system is to be truly robust, it must successfully operate in all 

of these conditions. 
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While the results of the thesis have proven that a vision-based landing system is at 

least partially feasible, they also indicate that the runway detection algorithm struggles at 

extremely long and short ranges. If this vision-based approach is to be pursued, future 

work must focus on achieving accurate results at both long and short ranges. Perhaps the 

solution to this issue lies in adapting the algorithm itself. The system could also possibly 

use integrated sensors such as altimeters or range finders to increase accuracy. 

Regardless, further development and analysis is required to increase the range of the 

system. 
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APPENDIX. HSV AND GRAYSCALE PROCESSING TIMES 

Trial Grayscale Time (s) HSV Time (s) 

1 0.168 0.072 

2 0.151 0.043 

3 0.158 0.040 

4 0.195 0.043 

5 0.195 0.046 

6 0.185 0.050 

7 0.190 0.058 

8 0.194 0.047 

9 0.265 0.053 

10 0.192 0.052 

11 0.195 0.048 

12 0.231 0.055 

13 0.192 0.052 

14 0.294 0.047 

15 0.187 0.048 

16 0.178 0.047 

17 0.194 0.048 

18 0.227 0.054 

19 0.184 0.057 

20 0.193 0.047 

21 0.197 0.047 

22 0.189 0.054 

23 0.210 0.073 
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Trial Grayscale Time (s) HSV Time (s) 

24 0.191 0.046 

25 0.192 0.051 

26 0.193 0.052 

27 0.201 0.046 

28 0.204 0.046 

29 0.186 0.048 

30 0.202 0.048 

AVG: 0.198 0.051 

STDEV: 0.027536 0.007243 

VAR: 0.000758 5.25E-05 
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